A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation.

نویسندگان

  • Maciej T Lazarewicz
  • Michele Migliore
  • Giorgio A Ascoli
چکیده

We introduce a novel computational model of hippocampal pyramidal cells physiology based on an up-to-date, detailed description of passive and active biophysical properties and real dendritic morphology. This model constitutes a modification of a previous (1995) model which included complex calcium dynamics and Na(+), K(+), and Ca(2+) currents. Changes reflect recently acquired experimental knowledge regarding the types and spatial distributions of these currents. The updated model responds to simulated somatic current clamp stimulation with a train of spikes (burst). The shape of the burst reproduces the characteristic behavior observed experimentally, similarly to the previous model. However, an analysis of dendritic membrane voltage distribution during the burst shows that the mechanisms underlying this somatic behavior are dramatically different in the two models. In the previous model, all spikes were generated in the soma and backpropagated in the dendrites. In the updated model, in contrast, only the first spike is initiated somatically. The second somatic spike is preceded by a dendritic spike (triggered by the first spike backpropagation), which propagates both backward and forward, reaching the soma just before the rise of the second somatic spike. The third and fourth spikes are similarly caused by a complex spatio-temporal interplay between somatic and dendritic depolarization. These results suggest that the distribution of ionic currents recently characterized in hippocampal pyramidal cells can support both somatic and dendritic spike initiation. In addition, these simulations demonstrate that models with considerably different distributions of active conductances can reproduce the same experimental bursting behavior with distinct biophysical mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recruitment of an inhibitory hippocampal network after bursting in a single granule cell.

The hippocampal CA3 area, an associational network implicated in memory function, receives monosynaptic excitatory as well as disynaptic inhibitory input through the mossy-fiber axons of the dentate granule cells. Synapses made by mossy fibers exhibit low release probability, resulting in high failure rates at resting discharge frequencies of 0.1 Hz. In recordings from functionally connected pa...

متن کامل

Cell type-specific synaptic dynamics of synchronized bursting in the juvenile CA3 rat hippocampus.

Spontaneous synchronous bursting of the CA3 hippocampus in vitro is a widely studied model of physiological and pathological network synchronization. The role of inhibitory conductances during network bursting is not understood in detail, despite the fact that several antiepileptic drugs target GABA(A) receptors. Here, we show that the first manifestation of a burst event is a cell type-specifi...

متن کامل

Chemical kindling enhances the Schaffer collateral-CAl pyramidal cell synaptic transmission in anesthetized rats

Epilepsy is one of the common disorders in human community. Clinical observations have shown that epileptic patients have often difficulty in learning and memory. Kindling is a laboratory model for studying epilepsy and its complications. This experiment was designed to study the effect of chemical kindling on Schaffer collateral-CA1 pyramidal cell synaptic transmission using pentylenetetrazole...

متن کامل

Ionic Mechanisms of Endogenous Bursting in CA3 Hippocampal Pyramidal Neurons: A Model Study

A critical property of some neurons is burst firing, which in the hippocampus plays a primary role in reliable transmission of electrical signals. However, bursting may also contribute to synchronization of electrical activity in networks of neurons, a hallmark of epilepsy. Understanding the ionic mechanisms of bursting in a single neuron, and how mutations associated with epilepsy modify these...

متن کامل

Frequency dependence of CA3 spike phase response arising from h-current properties

The phase of firing of hippocampal neurons during theta oscillations encodes spatial information. Moreover, the spike phase response to synaptic inputs in individual cells depends on the expression of the hyperpolarization-activated mixed cation current (I h ), which differs between CA3 and CA1 pyramidal neurons. Here, we compared the phase response of these two cell types, as well as their int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 67 1-3  شماره 

صفحات  -

تاریخ انتشار 2002